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The language of nonlinear dynamic¢al systems am# ergodic theory is used to present o
theoretical framework for the study of mind. The hasie space X consists of the callection of ail
brainimages (clusters of activated neurons) that are relevant te consciousness. The dynamics
of the brain is modelled by means of a|discrete time transformation T which takes a cluster of
activated brain cells into another cluster of aeﬁv:nta{brain cells. The space X is partitioned
into subcollections of brain images, ﬂamely those generated by the five senses and by other
processes that produce brain images relevant to consciousness. It is argued that T'is a Markov
transformation with respect to this pa'rlition of X. This leads to the existence of an object g,
referred to as an SRB measure which possesses pmperk:ies that make it 2 candidate for mind: u
is ‘aware’ of the brain images in its support; 4 is time-invariant and acts as an attractor into
which all orbits of (conscious) brain images settle, Fi urthermore, the dynamical systems model
for mind allows the estimation of braininformation rates and provides a framework in which a
number of mind related issues can be discussed.
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1. INTRODUCTION

This note is written from the perspective that:it is
better to have some theory of mind — even ione
fraught with simplifications — than to have no
theory at all, which is the current state, There are
scientific efforts underway —~ most notably from the
perspective of quantum mechanics 4,5,9,10,16] -
to expiain consciousness, but there is no general
science of mind. There is no theoretical starting
point, no basic model from which more sophist-
icated ones can develop. Einstein's R.elativruity
Theory emerged from the rudimentary attempts of
Copernicus, Galileo and Newton to describe ‘the

macroworld. These early scientists saw physica
bodies and used telescopes to formulate a theory
of celestial mechanies. The physical bodies of the
mind are brain images and using instruments suck
as PET scans, mind scientists are now capable of
formulating a dynamical theory of mind.

T:Lis note does not deal with explanations oi
mind, but rather attempts to establish a theoretical
framework in which to study it. To do this we use the
laurgrlagc of nonlinear dynamics and ergodic theory.
We begin with a physical brain B that consists of a
large number of neurons and define X to be the space
of al! images realized in 5. By this we mean all
possible collections of actived neurons associated
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with conscious processes. A point x € Xis a t:iuster
of neurcns, which does not have to consist of
contiguous activated neurons, but can appear as a
complicated, disconnected collection of suc h| neu-

rons. X is, in fact, a subset of a very large but finite

dimensionai space, R” [3]. :

A living brain is a dynamical system and, as such,
there must exist a process or processes by which
brain images are transformed into brain images.
These processes may operate in continuous or
discrete time and may be dc‘;crihcd by differential
or partial differential or by difference or
integral eguations or even by combinmions of these.
For simplicity and to facilitate the presentation of
our model (and without loss of generality), we
assume that the dynamics of brain images can be
captured by a (ransformation 7, which acts in
discrete time. Although the brain is organized at
many levels, we are concerned oniy with those levels
which elfect consciousness and, for those ievels, we
assume that 7' describes brain dynamics. We|also
that the brain structures and processes are
constant over the time scale of interest. Hence ’fi'carz
be considered (o be constant. If we allow foy the
evolution of brain structures and processes, Bnlml T
become time-dependent and the model of this note
applies in a time-dependent manner. :

Section 2 provides a bl icf overview of the rele tant
ems and

juat Hons ¢

assume

notions and notations from dyvnamical syste
ergodic theory. In Section 3 we argue that the space
of brain images X can be partitioned into a finite
number of subsets, namely those which originate
from the five senses and from processes such as
thought and speech that are relevant to conscious-
ness. We let 7 denote the collection of these s;uh!scts
of X and that 7'is a Markov transforma-
tion, that is, that it maps any element P of P nn'io a
collection of elements of 7. Under general mndl—
tions the dvnamical system (X, 7") nossews an
o G_lu_[, FIN called an SRB measure, which desurjbas
the long term behaviour of brain image orbits Im‘ld
possesses properties that justify calling it mind. One
acmlr e

then argue

of these properties is that i acts as an atfr
most brain images whose orbits settle into it a I'tFr a
transitory trajectory of images? Another property is

that s manifests ‘awareness’ of the brain and reveals
the underlying brain dynamical system (X, 7). In
Section 4 we use the structure of the Markov model
to estimate information rates for the conscious part
of the brain. In Section 5 we discuss how the
dynamical system model can be used to create a
universal model in which brains are connected. In
Sectipn 6 we show that the dynamical system model
has & connection to quantum theory in view of the
fact that wave functions, when squared, give rise to
probability density functions that are the densities
of SRB measures for the spatial processes of
quantum mechanics.

2. DYNAMICAL SYSTEM NOTATION

Let X be a space (i.e., a collection of points) and
I ¥ — X a transformation. When we want (o
measure subsets of X, we first classify the subsets

be considered. These are usually the Borel
subsets, a Borel subset being the smallest collection
of subsets of X containing the open subsets (unions
of balls) and is closed under taking complements
and unions of countable many members of this
collection. These subsets are said to be measurable.
A function which associates to each Borel set a
positive number in such a way that lor each
countable collection of disjoint sets A; one has
wlJA4:) =5 p(4)) is called a measure. Tt is a
probability measure if 4{X)=1. We consider only
probability measures. By the support of a mea-
sure we mean the smallest (closed) Borel subset §
such that p(S)=1. We say u is supported on S.
Furthermore, §'is an invanant set which means that
nScs.

In dynamical systems theory we are interested in
measures which are invariant under the transforma-
tion T. Such a measure is defined by the property
that (7' 4) = u(A) for all measurable subsets A,
where T7Y(4) = {x: Tx € X}, the set of points that
are transformed into 4 after one application of T.
We say g is an ergodic measure if, for each Borel set
A, for which T7'4 = 4, we have u(4) =0 or u(4) =
|. Ergodicity is an indecomposability property
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which holds in many applications. One of rh]e main
consequences of ergodicity is the existence of dense
orbits, that is, orbits that wander throughout the en-
tire space X. If p is ergodic, the Birkhoff Brgodic
Theorem[12], implies: foreach measurablesubset A,

. 1 _l‘!—‘ J. .

Jim 2 2 xa(T'x) = () e
|

for almost ali x, where x,(x) is the indicator

function of 4, that is, y4(x) is 1 if x& 4 and 0

otherwise. It is possible that u is a measure

supported ona periedic orbit and then the statement

of the Birkhoff Ergodic Theorem is not inicrlesting '

: : . L e
as it applies only to those x’s in the periodic 'orbit,

We are, therefore, interested in invariant nlesllsurcs
which are supported on large sets. One such class of
measures are the SRB measures [14]. These are
physically relevant measures in that they are the
limits of experimentally found measures. More
precisely, we say that a sequence of mea,sures! {itn)
converges in the weak sense to the measure uif for ali
continuous functions g, we have [gdu, — __f‘gdga.
The measure p is called an SRB measure or, a
physical measure, if

H'—}
lim 1257;,. =1 weakly,

fe—g F7

—
(]
—

where &, is the point measure at x, often referred to
as the Dirac measure. It has vaiue 1 at x and is e'qun]
to G elsewhere. This point measure ¢an be thought of
as a function which identifies the point x. Wei can
visualize it as a vertical line of height 1 located at the
point x, much as a post in the ground identifies the
spot into which it is rooted. Note that {§.,) tr!aCe:s
the orbit of Dirac measures associated with| the
actual physical orbit { Tx}, x being any initial point.
(Note that Eq. (2) holds for more general weighting
sequences than {1/n}.} Now, T transforms x to|Tx.
This induces a transformation 7% which transforms
the Dirac measure &, to the Dirac measure 64/, as
depicted in Fig. 1.

The final notion we will need is that of a
Markov transformation. Roughly, 7 is a Markov

FIGURE 1 Transformation of Dirac measures under T

transformation on X if there exists a finite parti-
tiol P of X, that is, a collection of subsets
1P, Poy ..., P} of X such that T transforms each
P; cinto some union of £;'s. For Markov transforma-
tions there exists a general ergodic theorem which
guirantees the existence of an SRB measure [14],
Other sufficient conditions for the existence of
SRB measures are expansion [7] and folding [3].

Among the properties of SRB measures are the
following:

(1}| g acts on subsets of X, that is on space rather
than in time and, as such, is always ‘avail-
able’ as a source of knowledge about the
[ dynamical system. Furthermore, px can be
used to reveal 7.

(ii) | pactsasaglobal attractor as evidenced by (2,
Le., for any starting point (in a large set of
starting points), the time-averaged orbit con-
verges (weakly) to u.

Asa simple example of the foregoing, consider the
one dimensionai transformation 7: X — X, where
X:EO, Il and T is the triangle transformation
defined by

A A

2, if
L= {2— 2x, if

|

and shown in Fig. 2.

Let the partition P of X consist of P; =[0,1} and
Py =4, 1]. Then T'is Markov for this partition since
HP)=P UL, and T(P,)=P UP, Obviously,
7 isionto as it maps each element of the partition

w
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FIGURE 2

One dimensional triangle transformation

cnto X, Itis easy te show that the SRB measure for
this system is p = A, the Lebesgue measure which
measures intervals {and more complicated l;ets)
simply by their physical length. Hence,

n—1

lim ~ } : Srop = ) (3)

weakly for almost all x.

Let us now look more closely at Eq. (3} as this|will
help us 1 the sequel when we apply the foregoing
ideas to brain dynamics. ‘For almost all x” means
‘for all x in a set of Lebesgue measure 1. In |this

example the “almost all’ statement allows for| the
existence of many starting points x for which (3) fails
— indeed this is the case if x s a periodic point o T
Then the orbit {54} cycles through the finiten ‘..11?|_b-:‘r
of pointsin the cycie and cannot convergs to A L:ﬁthe
sense of (3). All the periodic points have Lebesgue
measure 0, and hence if, for whatever reason, |the
orbit is nudged out of its periodic cycle, it is likely to
become a point in the set of Lebesgue measure 1 and
then the new orbit will quickly reflect, via Eq. [}),T’che
SRB measure A. Since 7 is an expanding transfor-
mation, it does not take much to perturb ‘the
periodic orbit from its cycle. In fact, this system i

1 1
|

‘sensitive te initial conditions™ [6]; the slightest
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nudge is sufficient to expose the system’s inherent
chaotic behaviour and the new orbit will settle
quickly into the system’s SRB measure A

To summarize: for most starting points x, the
SRB measure (which is known to exist) will come
into actual being via the averaging process in (3).
Due to the instability of periodic orbits (7 is
expanding), any cycle is eventually derailed to a
point whose orbit is chaotic and the associated orbit
of Dirac measures quickly settles into the SRB
measure. The starting points that lead to chaotic
orbits have Lebesgue measure 1 and hence are
ubiquitously available to settle the dynamics into
the SRB measure M.

Once the SRB measure is known to exist, it is the
tlow of time and the time-averaging mechanisim that
displays the SRB measure. This averaging mechan-
ism is nothing other than a kind of check-up of all
the components of the brain system, that they are
functioning properly and available for service.

We will use these rudimentay notions in the sequel
to study brain dynamics. To prepare for the
application in a higher dimensional setting, note
that A possesses the following properties.

Awareness Lel x be any point in X which is
not & periodic point and let A” be a very small set
containing x . Since T is expanding, the orbit
{T7*Y:2) moves quickly out of 4, say in m<n
steps. Thus,

M & (mfn)by = cbs, (4)

which is the (scaled) Dirac measure at x*. Knowing
this measure is the same as knowing x”. Hence A is
‘aware’ of x”.

Inversion Since X and the partition P are
known, knowledge of A determines (almost uni-
quely) the transformation 7. This follows from
a simple application of the matrix form of the
Frobenius-Operator equation [2] for piccewise
linear transformations.

In summary, the SR B measure A has the following
proparties;

l. Ais ‘aware’ of almost all points in its support as
evinced by (4).
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2. Almostall orbits settle into A and therefore it acts
as a global attractor.
3. A determines the dynamics 7'

3. BRAIN FUNCTION AS A DYNAMICAL
SYSTEM AND THE SRB MEASURE

We now introduce the special setting of [3] in which
brain operation is viewed as a dynamical system on
the space X of compact subsets of the physicalspace
8, where B is that portion of the brain-maiter in
which processing of conscious brain images takes
place. (We will have more to say about this in the
sequel.) Bisasubset of three-dimensional space, ora
smooth manifeld, which means that locally, around
cach point, the brain-matter resembles a segment of
three-dimensional space.

ApointxeXisa compact subset of B; it repre-
sents a collection of activated neurons. Tis a trans-

formation from X into X and operates on con pact

subsets, that is, on collections of activated neurons
to produce a collection of activated neurons. The
actual physical mechanism by which a brain imageis
transformed to another brain image is not mpor-
tant. What is important is the fact that, at the end of
a unit of time (of the order of a second), a new bhrain
image is created. This process is modelled by a
discrete time transformation 7.

We partition X into subsets according to where
the brain images originate from, as shown in Fi o, 3.
Thus, Py is the collection of brain images induced by
vision, Pa, by touch, and so on. Without loss of
model generality, we postulate that there are 10 such
subsets, namely the images associated with the five
sensory inpuis: vision, touch, sound, smell, taste, ind
the brain images associated with speech, thought,
memory, motor activity and a category we refer to as
‘miscellaneous’ which collects the brain images
associated with emotions, say, and other processes
that we may have neglected. The actual number of
these subsets of brain images is not relevant to the
main idea of the present model. Let (P, ..., Py}
denote the collection of the subsets forming {hc
partition 2 of X. We claim that any P; can |be

=3

ta

FIGURE 3 Partition P of ¥, the space of all brain images
relevant to conscionsness,

|
|

mapped by Tonto all of X, that is, that any image in
zm_\} P;can be transformed by 7'to any other image in
X. [For example, a smell image can give rise to a
thought image as occurs, for example, in the novel
by Proust where the scent of a madelaine triggered
an hvalanche of thoughts. Analogously, an image
associated with a motor action can stimulate an
image associated with a sound. With the onto
assmmnption, T becomes Markov,

In a more realistic model, elements of the
partition of X' map onto some — but not necessarily
all | partition elements of X. The actual condition
needed is irreducibility of the adjacency matrix 12],
whifh is trivially satisfied if the transformation is
piecewise onto, In general we need neither Markov-
ncs.«{ noronto-ness. What isessential is an expanding
property [7] or a folding property which is at the
hcm!t of chaotic behaviour [3]. As a starting point in
modetling ‘mind” and in order to expedite the
presentation of the modei, we are content with a
simple Markov {piecewise onto) model of the brain
image transformation 7.

We now discuss how the SRB measure manifests
‘awareness’ of the brain. With the assumption of an
‘interesting’ transformation 7" (such as one that is
Markov and piecewise onto or expanding), we have
the existence of an SRB measure x. Let us consider a
brain orbit: for example, one that starts with a
memory image which leads to a thought image
which leads to a physical action image (such as a sigh
image) which in turn leads to another thought
image which leads to another memory image. This
is a transitory brain image orbit, which must
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ultimately ~ with loss of concentration, be nudged
into a brain image (in the set of g-measure 1) that
exhibits the SR B measure by virtue of the averaging
process of (3). Based on the foregoing, a possible
brain experiment might go as follows: a brain is
lured into forced concentration for some length of
time and then the concentration is released; the
brain image orbit during the transition from
concentration to non-concentration is traced by
PET scans, The images that occur after the release
from concentration might shed light on the orbit of
images that leads to p. Methods for analyzing
images are developed in [11,17].

Given a brain B, the space of images X on B, and a
partition £ of X together with the SRB measurg s, it
is possible — as in the one-dimensional case |- to
derive the image transformation within a claks of
piecewise linear transformations [2]. This implies
that p is ‘aware’ of brain (Eq. {4)) and brain
dynamics 7.

4. INFORMATION RATES

The space of images X and the Markov transfoyma-
tion T:X— X constitute what is known as a
Bernouilli shift [1], where the measure is the SRB
measure p has mass p; on each element P; of the
partition P. Since p(X)=1,p> +--- +p,=1, where
7> 0. Hence the information rate of the hrain
dynamical system is given by

g
H(P,T)=—% pilog p;. (5)
=1

Equation (5} yields the information rate off the
brain dynamical system treated as a single channel.
The conscious brain, however, is able to handle
many inputs at the same time ~ in effect acting|as a
paralle] processor. Hence we assume it can handle
input images from any of the g=10 sources of
conscious brain images simultaneously. Thus| we
are dealing with the brain B=8, x By x--- X B,
and the subsets given by X=X x X5 x .- QX
The information rate for this g-parallel system is

given by [13, Theorem 2.50]

g
Hiora(P,T) = —¢ ZPE log, p;. (6)

=i

Hence, the maximum information rate for this ¢-
para]lel system is ¢ logg. For ¢ = 10, the maximum
information rate is approximately 33 bits/s which
accords well with the estimate of between 15 and
50 bits/s given in [9, p. 60] by means of a com-
pletely different line of reasoning.

5. UNIVERSAL MODEIL OF MIND

Let us now consider N brains {B;, B,,..., By}
functioning at the same time. Since these brains
are independent of each other we can display
their dynamics on the space of images X=
Xi1UX,U- - -UXy, where X; denotes all the brain
images on B;. Let T;: X, X, be the image transfor-
mation on X; Then T{X;) C X}, i.e., each space of
images X; is invariant under 7. In Fig. 4 we show
this multi-brain situation symbolically.

By changing 7; slightly we can obtain an inter-
connected brain system. Let us suppose that for each
brain X;, T; is altered to 77 as follows: on a very
small set /;in X;, welet T7(f;) = X, thatis, T/ carries

1
T
X, %

0.8

0.67

0.4
s
0.2
X
5 . .
X, 02 x 04 06

0.8 XN 1

FIGURE 4 Indcpendent brains.
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4 $1al] set of special images to images in every other
brén, This can be effected by a transformationlsuch
as;shown in Fig. 5.

ior the transformations as shown in Fig. 5, lhere
eXits a globai SRB measure y on all of X which,
whn restricted to any 8, is approximatefy e(]u|al to
#Hi» 12 SR B measure for (X}, 7). Although an orbit
in 7. wiil spend most of its time inside X; it is
Noitheless able to leave X; — by hitting the right
smi] collection of images — and then to wander
thrugh all of X, the universal brain. The gl(ljba]
SR measure j ensures that there are dense orbits
on il of X. These orbits connect all the brains.
Firlly, if 77 is very sharp in the region whc‘I'e it
€Xthds into other brains, communication with
oth: brains can take as little as one iteration of t’x’}“‘.

6. (DNNECTION TO QUANTUM
I ECHANICS

In Giantum mechanics, the wave function #(x, 1),
whe squared, is interpreted as a probability density
fun on. Let us fix 7 and define f,(x)=|¢(x, ! .
The f(x) is the probability density function oif a

diff jon process [15]. This process, which is a
gen alized Brownian motion, can be modelled |by

TOWARDS A TI—IEORT OF MIND

a point transformation or random map {8] whos: :
SRIB measure is defined by £i(x), i.e.,

|
w(d) = /4]}()() dx.

7. OBSERVATIONS

{i) Location of Mind

T]uL existence of an SRB measure ¢ on X implies that

thelsupporl Sof e (u(S) = 1)isaset that is invariant,
i.e.,L that satisfies the condition 7(S)CS. This
suggests the existence of a location in the brain
where a cluster of neurcns can be directly connected
to i;self. Since the synaptic knobs on the axons of the
neurons in S are likely to produce activity far
rem!oved from S, it is likely that the neurons in S
interact via dendrodendritic synapses rather than
axop synapses. Such a densely packed cluster of
neu_rons with highly interacting dendrites would be a
candidate for the seat of mind. Transformingimages
by means of dendrodendritic synapses is efficient (in
thatl messages do not have to be relayed long
distances) and is therefore less prone to error. In
Crigk’s analysis of vision (3], the observed dense
interconnections between laver 6 of the visuai cortex
and the thalamus suggests a location for the support
of ah SRB measure.

It ES ofinterest to note that a brain image isa point
in a very high dimensional space R"[3] and. in this
space, we can obtain a great diversity of images all
conl:uined in a small physical ball of R",

(ii} I\I‘-'ﬁnd, Body, Reality

In the mathematical formalism of this note, mind
means the existence of the SRB measure i on the
space X of brain images, and body means the brain-
matter together with the space of images X. The
Birkhoff Ergodic Theorem for the system (X, T, 1)
descifibes the intimate way in which mind and body
areintermeshed. Since time and space are effectively
the dame in the Birkhoff theorem, we have the
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following symbolic equation:

X(body, brain) + #ime(flow of time for an

interesting transformation) = p(mind)

The flow of time as enacted by iteration pf an
Interesting tranformation 7(Markov, expanding,
folding) brings p(mind) into actuality.

(iii} Relative Consciousness

In the human brain the thought process is sufficient
to produce a folding transformation on the space of
images since images produced by senses can be
duplicated by thought. Hence, the human brain
possesses interesting dynamics and an SRB [mea-
sure. This is not the case for an inanimate object: a
rock has no dynamics at all relative to itselff and
hence cannot give rise to any invariant measure that
might have properties of mind. However, relatilve to
a point outside the rock, it may have interesting
dynamics. For example, consider the planets and
stars moving relative to a (central) point C in the
universe. It is conceivable that this dynamical
system is governed by sufficiently complidated
dynamics relative to C; then the collection of
inanimate objectives would possess a ‘relative mind’
with respect to C. In this case, the role of the pldnets
is analegous to that of the neurons in the brain,
where each neuron does not exhibit mind on its dwn.

But it appears that only man has mind relative to
himself by virtue of his ability to think, which is
probably the minimal condition that gives rise|to a
folding transformation (and hence possibly an SRB
measure} on the space of brain images.

(iv) Timelessness of Mind

o

Let the dynamical system (X, 7) possess an SRB
measure . Since g 1s supported on .S, which consists

of pieces of the physical space B, S and x are bound
by the very existence of p. Even if the underlying
space B disintegrates, 4 continues to exist, even if
mercly as a mathematical entity. Thus, mind — once
created by an interesting transformation and the
flow of time — exists forever after.
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