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that jJ. manifests 'awareness' of the brain and reveals
the underlying brain dynamical system (X, T). Tn
Section 4 we use the structure of the Markov model
to estimate information rates for the conscious part
of the brain. In Section 5 we discllss how the
dynamical system model can be used to create a
universal model in which brains are connected. In
Section 6 we show that the dynamical system model
has a connection to q lIantum theory in view of the
fact that wave functions, when squared, give rise to
probability density functions that are the densities
of SRB measures for the spatia.! processes of
quantum mechanics.
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2. DYNAMICAL SYSTEM NOTATION

Let X be a space (i.e., a collection of points) and
T: X -- X a transfonnation. When we want to

measure subsets of X, we first classify the subsets
to be considered. These are usually the Borel
subsets, a Borel subset being the smallest collection
of subsets of X containing the open subsets (unions
of balls) and is closed under taking complements
and umons of countable many members of this
collection. These subsets are said to be measumble.
A function which associates to each Borel set .\
positive number in such a way that for each
countable collection of disjoint sets Ai> one has
~(UAi) = 2:~(Ai) is called a measure. It is a
probability measure if Jk(X) = I. We consider 0111y
probability measures. By the support of a mea-
sure we me-an the smallest (closed) Borel subset S
such that ~(S) = 1. We say fJ, is supported on S.

Furthermore, S is an invariant set which means that
T(S) <;; S.

In dynamical systems theory we are interested in
measures which are invariant under the transforma-
tion T. Such a measure is defined by the property
that ~(r1A)=~(A) for all measurable subsets A,
where T" I(A) = {x: Tx EX}, the set of points that

are transformed into A after one application of T.
We say ~ is an ergodic measure if, for each Borel set
A, for which rIA = A, we have ~(A)= 0 or fJ,(A) =
1. Ergodicity is an indecomposability property
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f.L acts on subsets of X, that is on space rather
than in time and, as such, is always 'avail-
able' as a source of knowledge about the
dynamical system. Furthermore, Jl can be
used to reveal T.
Jl acts as a global attractor as evidenced by (2),
i.e., for any starting point (in a large set of
starting points), the time-averaged orbit con-
verges (weakly) to f.L.

aan

weakly, (2)

if 0 $ x < t.
if! < x $ I,

hown in Fig. 2.
l the partition P of X consist of PI == [0,1) and
i!, 1]. Then Tis Markov for this partition since
I=PIUP2 and 1T.P2)=PIUP2' Obviously,
Into as it maps each element of the partition
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nudge is sufficient to expose the system's inherent
chaotic behavio\lr and the new orbit will settle
quickly into the system's SRB measure A.

To summarize: for most starting points x, the
SRB measure (which is known to exist) will come
into actual being via the averaging process in (3).
Due to the instability of periodic orbits (T is
expanding), any cycle is eventually derailed to a
point whose orbit is chaotic and the associated orbit
of Dirac measures quickly settles into the SRB
measure. The starting points that lead to chaotic
orbits have Lebesgue measure I and hence are
ubiquitously available to settle the dynamics into
the SRB measure A,

Once the SRB measure is known to exist, it is the
now of time and the time-averaging mechanism that
displays the 8RB measure. This averaging mechan-
ism is nothing other than a kind of check-up of all
the components of the brain system, that they are
functioning properly and available for service.

We will use these rudimcntay notions in the sequel
to study brain dynamics. To prepare for the
application in a higher dimensional setting, note
that A possesses the following properties,

Awareness Let x. be any point in X which is
not a periodic point and let A. be a very small set
containing x", Since T is expanding, the orbit
{Tix*}~:o! moves quickly out of A", say in m < 1Z

steps. Thus,

-.

)./14' ~ (m/n)fi = Ct)_\i, (4)

which is the (scaled) Dirac measure at x.. Knowing
this measure is the same as knowing x". Hence A j!;
'aware' of x'.

Inversion Since X and the partition Pare
known, knowledge of A det~nnines (almost uni-
quely) the transformation T. This follows from
a simple application of the matrix form of the
Frobenius-Operator equation [2] for piecewise
linear transformations.

In summary, the SRBmeasure). has the following

properties:

~

1. >. is 'aware' of almost all points in its support as
evinced by (4).
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4. INFORMATION RATES

Pi> O. Hence
dynamical system is given by

q

LPilog2Pi.
;=1

H(P,1) =-

and

given by [13, Theorem 2.50]

(6)

~

Hence, the maximum information rate for this q-
parallel system is q log2q. For q = 10, the maximum
information rate is approximately 33 bitsfs which
accords well with the estimate of between 15 and
50 bitsfs given in [9, p. 60] by means of a com-
pletely different line of reasoning.

by

5. UNIVERSAL MODEL OF MIND

Let us now consider N brains {B" B2,..., BN}
functioning at the same time. Since these brains
are independent of each other we can display
their dynamics on the space of images X =
XI U X2 u. . . U X N, where Xi denotes all the brain

images on Bi. Let T[: Xi--.> Xi be the image transfor-
mation on Xi Then T,{Xj) ~ Xi, i.e., each space of
images Xi is invariant under Tj. In Fig. 4 we show
this multi-brain situation symbolicaHy.

By changing Ti slightly we can obtain an inter-
connected brain system. Let us suppose that for each
brain Xi, Tj is altered to Ti- as follows: on a very
smallsetljinXi, we let 1';(1i) = X, that is, Ticarries

and
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FIGURE 4 Independent brains.
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or random map [8] whose

by f'(x), i.e.,

J.tt(A) = lJ,(x)dx.

7.
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folJowing symbolic equation:

(iii) Relative Consciousness

IS

(iv) Timelessness of Mind

~

of pieces of the physical space D, Sand f-L are bound
by the very existence of f-L. Even if the underlying
space B disintegrates, 1-£ continues to exist, even if
merely as a mathematical entity. Thus, mind - once
created by an interesting transformation and the
flow oftime - exists forever after.
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